A Left-Monotone Solution to the Peacock Problem

Martin Brückerhoff-Plückelmann University of Bonn

(j.w. with Martin Huesmann and Nicolas Juillet)

Robust Techniques in Quantitative Finance University of Oxford, 7 Sep 2018

Finitely many time steps $T = \{1, ..., n\}$, underlying $S = (S_t)_{t \in T}$ and derivative Φ . $(G_{\alpha})_{\alpha \in \mathcal{A}}$ family of derivatives with (market) prices $(p_{\alpha})_{\alpha \in \mathcal{A}}$.

$$\begin{array}{ll} \underline{P} & = & \inf\limits_{\substack{\gamma \text{ martingale measure,} \\ \forall \alpha : \mathbb{E}_{\gamma}[G_{\alpha}(S)] = p_{\alpha}}} \mathbb{E}_{\gamma}\left[\Phi(S_{1},...,S_{n})\right] \\ \overline{P} & = & \sup\limits_{\substack{\gamma \text{ martingale measure,} \\ \forall \alpha : \mathbb{E}_{\gamma}[G_{\alpha}(S)] = p_{\alpha}}} \mathbb{E}_{\gamma}\left[\Phi(S_{1},...,S_{n})\right] \end{array}$$

Finitely many time steps $T = \{1, ..., n\}$, underlying $S = (S_t)_{t \in T}$ and derivative Φ . $(G_{\alpha})_{\alpha \in \mathcal{A}}$ family of derivatives with (market) prices $(p_{\alpha})_{\alpha \in \mathcal{A}}$.

$$\begin{array}{ll} \underline{P} & = & \inf\limits_{\substack{\gamma \text{ martingale measure,} \\ \forall \alpha : \mathbb{E}_{\gamma}[G_{\alpha}(S)] = p_{\alpha} }} \mathbb{E}_{\gamma}\left[\Phi(S_{1},...,S_{n})\right] \\ \overline{P} & = & \sup\limits_{\substack{\gamma \text{ martingale measure,} \\ \forall \alpha : \mathbb{E}_{\gamma}[G_{\alpha}(S)] = p_{\alpha} }} \mathbb{E}_{\gamma}\left[\Phi(S_{1},...,S_{n})\right] \end{array}$$

Assumption: $(G_{\alpha})_{\alpha \in \mathcal{A}}$ is the family of all call-options for some strike $K \in \mathbb{R}$ and maturity $t \in \mathcal{T}$.

Finitely many time steps $T = \{1, ..., n\}$, underlying $S = (S_t)_{t \in T}$ and derivative Φ . $(G_{\alpha})_{\alpha \in \mathcal{A}}$ family of derivatives with (market) prices $(p_{\alpha})_{\alpha \in \mathcal{A}}$.

$$\begin{array}{lcl} \underline{P} & = & \inf\limits_{\substack{\gamma \text{ martingale measure,} \\ \forall \alpha \colon \mathbb{E}_{\gamma}[G_{\alpha}(S)] = p_{\alpha}}} \mathbb{E}_{\gamma}\left[\Phi(S_{1},...,S_{n})\right] \\ \overline{P} & = & \sup\limits_{\substack{\gamma \text{ martingale measure,} \\ \forall \alpha \colon \mathbb{E}_{\gamma}[G_{\alpha}(S)] = p_{\alpha}}} \mathbb{E}_{\gamma}\left[\Phi(S_{1},...,S_{n})\right] \end{array}$$

Assumption: $(G_{\alpha})_{\alpha \in \mathcal{A}}$ is the family of all call-options for some strike $K \in \mathbb{R}$ and maturity $t \in \mathcal{T}$.

Lemma (Breeden-Litzenberger)

The expectation values of $(S_t - K)^+$ for $K \in \mathbb{R}$ determine the marginal distribution of S_t .

Finitely many time steps $T = \{1, ..., n\}$, underlying $S = (S_t)_{t \in T}$ and derivative Φ . $(G_{\alpha})_{\alpha \in \mathcal{A}}$ family of derivatives with (market) prices $(p_{\alpha})_{\alpha \in \mathcal{A}}$.

$$\underline{P} = \inf_{\substack{\gamma \text{ martingale measure,} \\ \forall t: \text{Law}_{\gamma}(S_{t}) = \mu_{t}}} \mathbb{E}_{\gamma} \left[\Phi(S_{1}, ..., S_{n}) \right]$$

$$\overline{P} = \sup_{\substack{\gamma \text{ martingale measure,} \\ \forall t: \text{Law}_{\gamma}(S_{t}) = \mu_{t}}} \mathbb{E}_{\gamma} \left[\Phi(S_{1}, ..., S_{n}) \right]$$

Assumption: $(G_{\alpha})_{\alpha \in \mathcal{A}}$ is the family of all call-options for some strike $K \in \mathbb{R}$ and maturity $t \in \mathcal{T}$.

Lemma (Breeden-Litzenberger)

The expectation values of $(S_t - K)^+$ for $K \in \mathbb{R}$ determine the marginal distribution of S_t .

Let T = [0,1] and $(\mu_t)_{t \in T}$ be a family of probability measures on \mathbb{R} .

Definition

The family $(\mu_t)_{t\in T}$ is called a **peacock**^a if $t\mapsto \int_{\mathbb{R}}\varphi\,\mathrm{d}\mu_t$ is increasing for all convex functions $\varphi:\mathbb{R}\to\mathbb{R}$.

^aDerived from PCOC = Processus Croissant pour l'Ordre Convexe.

Let T = [0,1] and $(\mu_t)_{t \in T}$ be a family of probability measures on \mathbb{R} .

Definition

The family $(\mu_t)_{t\in\mathcal{T}}$ is called a **peacock**^a if $t\mapsto \int_{\mathbb{R}}\varphi\,\mathrm{d}\mu_t$ is increasing for all convex functions $\varphi:\mathbb{R}\to\mathbb{R}$.

^aDerived from PCOC = Processus Croissant pour l'Ordre Convexe.

Theorem (Kellerer)

There exists a (cadlag) martingale with one-dimensional marginals $(\mu_t)_{t\in T}$ if and only if $(\mu_t)_{t\in T}$ is a (right-continuous) peacock.

The **peacock problem** is to construct a martingale that has the prescribed one-dimensional marginals as explicitly as possible.

Let T = [0,1] and $(\mu_t)_{t \in T}$ be a family of probability measures on \mathbb{R} .

Definition

The family $(\mu_t)_{t\in T}$ is called a **peacock**^a if $t\mapsto \int_{\mathbb{R}} \varphi \, \mathrm{d}\mu_t$ is increasing for all convex functions $\varphi: \mathbb{R} \to \mathbb{R}$.

^aDerived from PCOC = Processus Croissant pour l'Ordre Convexe.

Theorem (Kellerer)

There exists a (cadlag) martingale with one-dimensional marginals $(\mu_t)_{t\in T}$ if and only if $(\mu_t)_{t\in T}$ is a (right-continuous) peacock.

The **peacock problem** is to construct a martingale that has the prescribed one-dimensional marginals as explicitly as possible.

- ► Hirsch-Profeta-Roynette-Yor ['11], Lowther ['08], Hobson ['17], ...
- ► Henry-Labordere-Tan-Touzi ['16] and Juillet ['18]

Choose a sequence $(R_n)_{n\in\mathbb{N}}$ of finitely many time points in T.

▶ Henry-Labordere, Tan, Touzi and Juillet Construct a sequence $(\pi_n)_{n\in\mathbb{N}}$ of discrete time martingal couplings by joining the Left-Curtain couplings of two consecutive marginals:

Choose a sequence $(R_n)_{n\in\mathbb{N}}$ of finitely many time points in T.

▶ Henry-Labordere, Tan, Touzi and Juillet Construct a sequence $(\pi_n)_{n\in\mathbb{N}}$ of discrete time martingal couplings by joining the Left-Curtain couplings of two consecutive marginals:

Our Approach

Construct a sequence $(\pi_n)_{n\in\mathbb{N}}$ of discrete time martingal couplings by extending the Left-Curtain Coupling over all marginals:

Choose a sequence $(R_n)_{n\in\mathbb{N}}$ of finitely many time points in T.

▶ Henry-Labordere, Tan, Touzi and Juillet Construct a sequence $(\pi_n)_{n\in\mathbb{N}}$ of discrete time martingal couplings by joining the Left-Curtain couplings of two consecutive marginals:

$$\pi_n$$
 minimizes $\mathbb{E}_{\gamma}[c(S_k, S_{k+1})]$ simult. $\forall 0 \leq k \leq n-1$ among all martingale couplings of $\mu_0, \mu_{t_1}, ..., \mu_1$

Our Approach

Construct a sequence $(\pi_n)_{n\in\mathbb{N}}$ of discrete time martingal couplings by extending the Left-Curtain Coupling over all marginals:

Choose a sequence $(R_n)_{n\in\mathbb{N}}$ of finitely many time points in T.

▶ Henry-Labordere, Tan, Touzi and Juillet Construct a sequence $(\pi_n)_{n\in\mathbb{N}}$ of discrete time martingal couplings by joining the Left-Curtain couplings of two consecutive marginals:

$$\pi_n$$
 minimizes $\mathbb{E}_{\gamma}[c(S_k, S_{k+1})]$ simult. $\forall 0 \leq k \leq n-1$ among all martingale couplings of $\mu_0, \mu_{t_1}, ..., \mu_1$

Our Approach

Construct a sequence $(\pi_n)_{n\in\mathbb{N}}$ of discrete time martingal couplings by extending the Left-Curtain Coupling over all marginals:

 π_n minimizes $\mathbb{E}_{\gamma}[c(S_0, S_{k+1})]$ simult. $\forall 0 \leq k \leq n-1$ among all martingale couplings of $\mu_0, \mu_{t_1}, ..., \mu_1$

Choose a sequence $(R_n)_{n\in\mathbb{N}}$ of finitely many time points in T.

▶ Henry-Labordere, Tan, Touzi and Juillet Construct a sequence $(\pi_n)_{n\in\mathbb{N}}$ of discrete time martingal couplings by joining the Left-Curtain couplings of two consecutive marginals:

$$\pi_n$$
 minimizes $\mathbb{E}_{\gamma}[c(S_k, S_{k+1})]$ simult. $\forall 0 \leq k \leq n-1$ among all martingale couplings of $\mu_0, \mu_{t_1}, ..., \mu_1$

Our Approach

Construct a sequence $(\pi_n)_{n\in\mathbb{N}}$ of discrete time martingal couplings by extending the Left-Curtain Coupling over all marginals:

$$\pi_n$$
 minimizes $\mathbb{E}_{\gamma}[c(S_0, S_{k+1})]$ simult. $\forall 0 \leq k \leq n-1$ among all martingale couplings of $\mu_0, \mu_{t_1}, ..., \mu_1$

(c.f. Nutz-Stebegg-Tan ['17], Beiglböck-Cox-Huesmann ['17])

Let μ_0, μ_1 be two probability measures on \mathbb{R} with $\mu_0 \leq_c \mu_1$ and $\mu_0(\{x\}) = 0$ for all $x \in \mathbb{R}$.

Let μ_0, μ_1 be two probability measures on \mathbb{R} with $\mu_0 \leq_c \mu_1$ and $\mu_0(\{x\}) = 0$ for all $x \in \mathbb{R}$.

The left-curtain coupling is the unique martingale coupling π of μ_0 and μ_1 that satisfies the following equivalent properties:

Let μ_0, μ_1 be two probability measures on \mathbb{R} with $\mu_0 \leq_c \mu_1$ and $\mu_0(\{x\}) = 0$ for all $x \in \mathbb{R}$.

The left-curtain coupling is the unique martingale coupling π of μ_0 and μ_1 that satisfies the following equivalent properties:

(i) For all $c \in C^{1,2}(\mathbb{R}^2)$ with $\partial_{xyy}c < 0$ (SMCF) it holds

$$\mathbb{E}_{\pi}[c(X,Y)] = \inf \left\{ \mathbb{E}_{\gamma}[c(X,Y)] : \gamma \text{ mart. cpl. of } \mu_0 \text{ and } \mu_1 \right\}.$$

(Exmaples:
$$(y - x)^3, e^{-x}y^2, ...$$
)

Let μ_0, μ_1 be two probability measures on \mathbb{R} with $\mu_0 \leq_c \mu_1$ and $\mu_0(\{x\}) = 0$ for all $x \in \mathbb{R}$.

The left-curtain coupling is the unique martingale coupling π of μ_0 and μ_1 that satisfies the following equivalent properties:

(i) For all $c \in C^{1,2}(\mathbb{R}^2)$ with $\partial_{xyy}c < 0$ (SMCF) it holds

$$\mathbb{E}_{\pi}[c(X,Y)] = \inf \left\{ \mathbb{E}_{\gamma}[c(X,Y)] : \gamma \text{ mart. cpl. of } \mu_0 \text{ and } \mu_1 \right\}.$$

(Exmaples:
$$(y - x)^3, e^{-x}y^2, ...$$
)

(ii) For all $a \in \mathbb{R}$ it holds

$$\pi(X \le a, Y \in \cdot) = \mathcal{S}^{\mu_1}(\mu_{0|(-\infty,a]}),$$

i.e. $\pi(X \le a, Y \in \cdot)$ is 'the most concentrated submeasure of μ_1 that is in convex order greater than $\mu_{0|(-\infty|a)}$ '

Let μ and ν be finite Borel measures on \mathbb{R} .

- ▶ convex order: $\nu \leq_c \mu$ if $\int_{\mathbb{R}} \varphi \, d\mu \leq \int_{\mathbb{R}} \varphi \, d\nu$ for all convex φ .
- ▶ positive order: $\nu \leq_+ \mu$ if $\int_{\mathbb{R}} \varphi \, \mathrm{d}\mu \leq \int_{\mathbb{R}} \varphi \, \mathrm{d}\nu$ for all $\varphi \geq 0$.
- ▶ conv.-pos. order: $\nu \leq_{c,+} \mu$ if $\int_{\mathbb{R}} \varphi \, \mathrm{d}\mu \leq \int_{\mathbb{R}} \varphi \, \mathrm{d}\nu$ for all conv. $\varphi \geq 0$.

Let μ and ν be finite Borel measures on \mathbb{R} .

- ▶ convex order: $\nu \leq_c \mu$ if $\int_{\mathbb{R}} \varphi \, d\mu \leq \int_{\mathbb{R}} \varphi \, d\nu$ for all convex φ .
- ▶ positive order: $\nu \leq_+ \mu$ if $\int_{\mathbb{R}} \varphi \, \mathrm{d}\mu \leq \int_{\mathbb{R}} \varphi \, \mathrm{d}\nu$ for all $\varphi \geq 0$.
- ▶ conv.-pos. order: $\nu \leq_{c,+} \mu$ if $\int_{\mathbb{R}} \varphi \, \mathrm{d}\mu \leq \int_{\mathbb{R}} \varphi \, \mathrm{d}\nu$ for all conv. $\varphi \geq 0$.

Definition

Let $\nu \leq_{c,+} \mu$. The shadow of ν in μ is the unique measure η that satisfies

- (i) $\nu \leq_c \eta \leq_+ \mu$ and
- (ii) for all η' with $\nu \leq_c \eta' \leq_+ \mu$ holds $\eta \leq_c \eta'$.

It is denoted by $S^{\mu}(\nu)$.

Let μ and ν be finite Borel measures on \mathbb{R} .

- ▶ convex order: $\nu \leq_c \mu$ if $\int_{\mathbb{R}} \varphi \, d\mu \leq \int_{\mathbb{R}} \varphi \, d\nu$ for all convex φ .
- ▶ positive order: $\nu \leq_+ \mu$ if $\int_{\mathbb{R}} \varphi \, \mathrm{d}\mu \leq \int_{\mathbb{R}} \varphi \, \mathrm{d}\nu$ for all $\varphi \geq 0$.
- ▶ conv.-pos. order: $\nu \leq_{c,+} \mu$ if $\int_{\mathbb{R}} \varphi \, \mathrm{d}\mu \leq \int_{\mathbb{R}} \varphi \, \mathrm{d}\nu$ for all conv. $\varphi \geq 0$.

Definition

Let $\nu \leq_{c,+} \mu$. The shadow of ν in μ is the unique measure η that satisfies

- (i) $\nu \leq_c \eta \leq_+ \mu$ and
- (ii) for all η' with $\nu \leq_c \eta' \leq_+ \mu$ holds $\eta \leq_c \eta'$.

It is denoted by $S^{\mu}(\nu)$.

Example: $\mu_0 = \mathrm{Unif}_{[-1,1]}$, $\mu_1 = \mathrm{Unif}_{[-2,2]}$, $\nu = \mu_{0|(-\infty,a])}$

(Generalized) Shadow

Definition

Let $(\mu_t)_{t\in\mathcal{T}}$ be a peacock and $\nu\leq_{c,+}\mu_t$ for all $t\in\mathcal{T}$. The (generalized) shadow of ν in $(\mu_t)_{t\in\mathcal{T}}$ is defined as

$$\operatorname{Csup}\left\{\mathcal{S}^{\mu_{r_n}}\big(\mathcal{S}^{\mu_{r_{n-1}}}\big(\;...\;\mathcal{S}^{\mu_{r_1}}(\nu)\big)\big)\;\middle|n\in\mathbb{N},r_1,...,r_n\in\mathcal{T}\right\}.$$

It is denoted by $S^{(\mu_t)_{t\in T}}(\nu)$.

(Generalized) Shadow

Definition

Let $(\mu_t)_{t\in T}$ be a peacock and $\nu \leq_{c,+} \mu_t$ for all $t\in T$. The (generalized) **shadow** of ν in $(\mu_t)_{t\in T}$ is defined as

$$\operatorname{Csup}\left\{\mathcal{S}^{\mu_{r_n}}\big(\mathcal{S}^{\mu_{r_{n-1}}}\big(\;...\;\mathcal{S}^{\mu_{r_1}}(\nu)\big)\big)\;|n\in\mathbb{N},r_1,...,r_n\in\mathcal{T}\right\}.$$

It is denoted by $S^{(\mu_t)_{t\in T}}(\nu)$.

Theorem

Let $(\mu_t)_{t\in T}$ be a peacock, $\nu \leq_{c,+} \mu_t$ for all $t\in T$ and suppose that T has a maximal element t_{max} . It holds

$$\mathcal{S}^{(\mu_t)_{t\in\mathcal{T}}}(\nu) = \operatorname{Cinf}\left\{ \eta_{t_{max}} \mid \exists (\eta_t)_{t\in\mathcal{T}} \forall s \leq t : \nu \leq_c \eta_s \leq_c \eta_t \leq_+ \mu_t \right\}.$$

Moreover, the infimum is attained, i.e. we have $S^{(\mu_t)_{t\in T}}(\nu) \leq_+ \mu_{t_{max}}$.

Example of a Shadow

Define $(\mu_t)_{t\in[0,1]}$ and $(\mu_t')_{t\in[0,1]}$ as

$$\mu_t = \mathrm{Unif}_{[-t,t]} \qquad \mu_t' = \begin{cases} \mathrm{Unif}_{[-1,1]} &, t < 0.3 \\ \frac{1}{2} \mathrm{Unif}_{[-\frac{3}{2}, -\frac{1}{2}]} + \frac{1}{2} \mathrm{Unif}_{[\frac{1}{2}, \frac{3}{2}]} &, t \in [0.3, 0.6) \\ \mathrm{Unif}_{[-2,2]} &, t \ge 0.6 \end{cases}$$

and
$$\nu = \mu_{0|(-\infty,0]} = \frac{1}{2} \mathrm{Unif}_{[-1,0]}$$
.

Example of a Shadow

Define $(\mu_t)_{t\in[0,1]}$ and $(\mu_t')_{t\in[0,1]}$ as

$$\mu_{t} = \mathrm{Unif}_{[-t,t]} \qquad \mu'_{t} = \begin{cases} \mathrm{Unif}_{[-1,1]} &, t < 0.3 \\ \frac{1}{2} \mathrm{Unif}_{[-\frac{3}{2}, -\frac{1}{2}]} + \frac{1}{2} \mathrm{Unif}_{[\frac{1}{2}, \frac{3}{2}]} &, t \in [0.3, 0.6) \\ \mathrm{Unif}_{[-2,2]} &, t \ge 0.6 \end{cases}$$

and
$$\nu = \mu_{0|(-\infty,0]} = \frac{1}{2} \mathrm{Unif}_{[-1,0]}$$
.

First Result: Existence

Theorem

Let $(\mu_t)_{t\in[0,1]}$ be a right-continuous peacock with $\mu_0(\{x\})=0$ for all $x\in\mathbb{R}$. There **exists** a solution π to the corresponding peacock problem with the following two properties:

First Result: Existence

Theorem

Let $(\mu_t)_{t\in[0,1]}$ be a right-continuous peacock with $\mu_0(\{x\})=0$ for all $x\in\mathbb{R}$. There **exists** a solution π to the corresponding peacock problem with the following two properties:

(i) π is a simultaneous minimizer for all SMCF c, i.e. it holds

$$\mathbb{E}_{\pi}\left[c(S_0, S_t)\right] = \inf\left\{\mathbb{E}_{\gamma}\left[c(S_0, S_t)\right] : \gamma \text{ solution}\right\}$$

for all c satisfying integrability conditions and all $t \in [0,1]$.

First Result: Existence

Theorem

Let $(\mu_t)_{t\in[0,1]}$ be a right-continuous peacock with $\mu_0(\{x\})=0$ for all $x\in\mathbb{R}$. There **exists** a solution π to the corresponding peacock problem with the following two properties:

(i) π is a simultaneous minimizer for all SMCF c, i.e. it holds

$$\mathbb{E}_{\pi}\left[c(S_0, S_t)\right] = \inf\left\{\mathbb{E}_{\gamma}\left[c(S_0, S_t)\right] : \gamma \text{ solution}\right\}$$

for all c satisfying integrability conditions and all $t \in [0,1]$.

(ii) π is left-monotone, i.e. it holds

$$\operatorname{Law}_{\pi}(S_0 \leq a, S_t \in \cdot) = \mathcal{S}^{(\mu_s)_{s \in [0,1]}}(\mu_{0|(-\infty,a]})$$

for all $a \in \mathbb{R}$ and $t \in [0, 1]$.

Lemma

Lemma

The Theorem is true if $(\mu_t)_{t\in[0,1]}$ consists of at most finitely many different measures.

▶ Take a suitable approximation of [0,1] by finitely many timepoints and construct the peacock $(\mu_t^n)_{t\in[0,1]}$.

Lemma

- ▶ Take a suitable approximation of [0,1] by finitely many timepoints and construct the peacock $(\mu_t^n)_{t\in[0,1]}$.
- ▶ We get sequence $(\pi_n)_{n\in\mathbb{N}}$ of solutions corresponding to $(\mu_t^n)_{t\in[0,1]}$ satisfying (i) and (ii) w.r.t. $(\mu_t^n)_{t\in[0,1]}$.

Lemma

- ▶ Take a suitable approximation of [0,1] by finitely many timepoints and construct the peacock $(\mu_t^n)_{t\in[0,1]}$.
- ▶ We get sequence $(\pi_n)_{n\in\mathbb{N}}$ of solutions corresponding to $(\mu_t^n)_{t\in[0,1]}$ satisfying (i) and (ii) w.r.t. $(\mu_t^n)_{t\in[0,1]}$.
- ▶ There exists a convergent subsequence and the limit is a solution corresponding to $(\mu_t)_{t \in [0,1]}$ (similar to Beiglöck-Huesmann-Stebegg ['16]).

Lemma

- ▶ Take a suitable approximation of [0,1] by finitely many timepoints and construct the peacock $(\mu_t^n)_{t\in[0,1]}$.
- ▶ We get sequence $(\pi_n)_{n\in\mathbb{N}}$ of solutions corresponding to $(\mu_t^n)_{t\in[0,1]}$ satisfying (i) and (ii) w.r.t. $(\mu_t^n)_{t\in[0,1]}$.
- ▶ There exists a convergent subsequence and the limit is a solution corresponding to $(\mu_t)_{t\in[0,1]}$ (similar to Beiglöck-Huesmann-Stebegg ['16]).
- ▶ The properties are (i) and (ii) are stable under this topology.

Second Result: Equivalence

Theorem

Let $(\mu_t)_{t\in[0,1]}$ be a right-continuous peacock with $\mu_0(\{x\})=0$ for all $x\in\mathbb{R}$. For all solutions π to the corresponding peacock problem the following two properties are **equivalent**:

(i) π is a simultaneous minimizer for all SMCF c, i.e. it holds

$$\mathbb{E}_{\pi} [c(S_0, S_t)] = \inf \{ \mathbb{E}_{\gamma} [c(S_0, S_t)] : \gamma \in \Pi_{M}((\mu_t)_{t \in [0, 1]}) \}$$

for all c satisfying appropriate conditions and all $t \in [0,1]$.

(ii) π is left-monotone, i.e. it holds

$$\operatorname{Law}_{\pi}(S_0 \leq a, S_t \in \cdot) = \mathcal{S}^{(\mu_s)_{s \in [0,1]}}(\mu_{0|(-\infty,a]})$$

for all $a \in \mathbb{R}$ and $t \in [0, 1]$.

▶ The potential function of a finite measure μ on \mathbb{R} with finite first moment is defined as $U(x) = \int_{\mathbb{R}} |y - x| \, \mathrm{d}\mu(y)$ and characterizes μ uniquely.

- ▶ The potential function of a finite measure μ on \mathbb{R} with finite first moment is defined as $U(x) = \int_{\mathbb{R}} |y x| \, \mathrm{d}\mu(y)$ and characterizes μ uniquely.
- ▶ Assume π satisfies (*i*). The potential function of the measure $\text{Law}_{\pi}(S_0 \leq a, S_t \in \cdot)$ satisfies

- ▶ The potential function of a finite measure μ on \mathbb{R} with finite first moment is defined as $U(x) = \int_{\mathbb{R}} |y x| \, \mathrm{d}\mu(y)$ and characterizes μ uniquely.
- Assume π satisfies (i). The potential function of the measure $\text{Law}_{\pi}(S_0 \leq a, S_t \in \cdot)$ satisfies

$$U(x) = \mathbb{E}_{\pi} \left[|S_t - x| I_{(-\infty,a]}(S_0) \right]$$

- ▶ The potential function of a finite measure μ on \mathbb{R} with finite first moment is defined as $U(x) = \int_{\mathbb{R}} |y x| \, \mathrm{d}\mu(y)$ and characterizes μ uniquely.
- Assume π satisfies (i). The potential function of the measure $\text{Law}_{\pi}(S_0 \leq a, S_t \in \cdot)$ satisfies

$$U(x) = \mathbb{E}_{\pi} \left[|S_t - x| I_{(-\infty,a]}(S_0) \right]$$

=
$$\lim_{\varepsilon \to 0} \mathbb{E}_{\pi} \left[c_{\varepsilon}(S_0, S_t) \right]$$

- ▶ The potential function of a finite measure μ on \mathbb{R} with finite first moment is defined as $U(x) = \int_{\mathbb{R}} |y x| \, \mathrm{d}\mu(y)$ and characterizes μ uniquely.
- Assume π satisfies (i). The potential function of the measure $\text{Law}_{\pi}(S_0 \leq a, S_t \in \cdot)$ satisfies

$$\begin{array}{rcl} U(x) & = & \mathbb{E}_{\pi} \left[|S_t - x| I_{(-\infty,a]}(S_0) \right] \\ & = & \lim_{\varepsilon \to 0} \mathbb{E}_{\pi} \left[c_{\varepsilon}(S_0, S_t) \right] \\ & = & \lim_{\varepsilon \to 0} \inf \left\{ \mathbb{E}_{\gamma} \left[c_{\varepsilon}(S_0, S_t) \right] : \gamma \text{ solution} \right\} \end{array}$$

- ▶ The potential function of a finite measure μ on \mathbb{R} with finite first moment is defined as $U(x) = \int_{\mathbb{R}} |y x| \, \mathrm{d}\mu(y)$ and characterizes μ uniquely.
- Assume π satisfies (i). The potential function of the measure $\text{Law}_{\pi}(S_0 \leq a, S_t \in \cdot)$ satisfies

$$\begin{array}{rcl} U(x) & = & \mathbb{E}_{\pi} \left[|S_t - x| I_{(-\infty,a]}(S_0) \right] \\ & = & \lim_{\varepsilon \to 0} \mathbb{E}_{\pi} \left[c_{\varepsilon}(S_0,S_t) \right] \\ & = & \lim_{\varepsilon \to 0} \inf \left\{ \mathbb{E}_{\gamma} \left[c_{\varepsilon}(S_0,S_t) \right] : \gamma \ \textit{solution} \right\} \\ & = & \inf \left\{ \mathbb{E}_{\gamma} \left[|S_t - x| I_{(-\infty,a]}(S_0) \right] : \gamma \ \textit{solution} \right\} \end{array}$$

- ▶ The potential function of a finite measure μ on \mathbb{R} with finite first moment is defined as $U(x) = \int_{\mathbb{R}} |y x| \, \mathrm{d}\mu(y)$ and characterizes μ uniquely.
- Assume π satisfies (i). The potential function of the measure $\text{Law}_{\pi}(S_0 \leq a, S_t \in \cdot)$ satisfies

$$\begin{array}{rcl} U(x) & = & \mathbb{E}_{\pi} \left[|S_t - x| I_{(-\infty,a]}(S_0) \right] \\ & = & \lim_{\varepsilon \to 0} \mathbb{E}_{\pi} \left[c_{\varepsilon}(S_0,S_t) \right] \\ & = & \lim_{\varepsilon \to 0} \inf \left\{ \mathbb{E}_{\gamma} \left[c_{\varepsilon}(S_0,S_t) \right] : \gamma \ \textit{solution} \right\} \\ & = & \inf \left\{ \mathbb{E}_{\gamma} \left[|S_t - x| I_{(-\infty,a]}(S_0) \right] : \gamma \ \textit{solution} \right\} \end{array}$$

and this is the potential function of $S^{(\mu_s)_{s\in[0,1]}}(\mu_{0|(-\infty,a]})$.

• Assume π satisfies (ii).

- Assume π satisfies (ii).
- ▶ There exists a solution π' that satisfies properties (i) and (ii).

- Assume π satisfies (ii).
- ▶ There exists a solution π' that satisfies properties (i) and (ii). For all $a \in \mathbb{R}$ and $t \in [0,1]$ we have

$$\pi(S_0 \le a, S_t \in \cdot) = S^{(\mu_s)_{s \in [0,t]}}(\mu_{0|(-\infty,a]})$$

= $\pi'(S_0 \le a, S_t \in \cdot).$

- Assume π satisfies (ii).
- ▶ There exists a solution π' that satisfies properties (i) and (ii). For all $a \in \mathbb{R}$ and $t \in [0,1]$ we have

$$\pi(S_0 \leq a, S_t \in \cdot) = S^{(\mu_s)_{s \in [0,t]}}(\mu_{0|(-\infty,a]})$$
$$= \pi'(S_0 \leq a, S_t \in \cdot).$$

▶ Thus $\operatorname{Law}_{\pi}(S_0, S_t) = \operatorname{Law}_{\pi'}(S_0, S_t)$

- Assume π satisfies (ii).
- ▶ There exists a solution π' that satisfies properties (i) and (ii). For all $a \in \mathbb{R}$ and $t \in [0,1]$ we have

$$\pi(S_0 \leq a, S_t \in \cdot) = S^{(\mu_s)_{s \in [0,t]}}(\mu_{0|(-\infty,a]})$$
$$= \pi'(S_0 \leq a, S_t \in \cdot).$$

▶ Thus $\operatorname{Law}_{\pi}(S_0, S_t) = \operatorname{Law}_{\pi'}(S_0, S_t)$ and

$$\mathbb{E}_{\pi}[c(S_0, S_t)] = \mathbb{E}_{\pi'}[c(S_0, S_t)]$$

- Assume π satisfies (ii).
- ▶ There exists a solution π' that satisfies properties (i) and (ii). For all $a \in \mathbb{R}$ and $t \in [0,1]$ we have

$$\pi(S_0 \leq a, S_t \in \cdot) = S^{(\mu_s)_{s \in [0,t]}}(\mu_{0|(-\infty,a]})$$
$$= \pi'(S_0 \leq a, S_t \in \cdot).$$

▶ Thus $\operatorname{Law}_{\pi}(S_0, S_t) = \operatorname{Law}_{\pi'}(S_0, S_t)$ and

$$\mathbb{E}_{\pi}[c(S_0, S_t)] = \mathbb{E}_{\pi'}[c(S_0, S_t)]$$

$$= \inf \{\mathbb{E}_{\gamma}[c(S_0, S_t)] : \gamma \text{ solution}\}$$

for all SMCF c and $t \in [0, 1]$.

Definition

A peacock $(\mu_t)_{t\in[0,1]}$ is called non-obstructed if

$$S^{(\mu_s)_{s \in [0,t]}}(\mu_{0|(-\infty,a]}) = S^{\mu_t}(\mu_{0|(-\infty,a]})$$

for all $t \in [0,1]$ and $a \in \mathbb{R}$.

Definition

A peacock $(\mu_t)_{t\in[0,1]}$ is called non-obstructed if

$$S^{(\mu_s)_{s\in[0,t]}}(\mu_{0|(-\infty,a]}) = S^{\mu_t}(\mu_{0|(-\infty,a]})$$

for all $t \in [0,1]$ and $a \in \mathbb{R}$.

Definition

A peacock $(\mu_t)_{t\in[0,1]}$ is called non-obstructed if

$$S^{(\mu_s)_{s\in[0,t]}}(\mu_{0|(-\infty,a]}) = S^{\mu_t}(\mu_{0|(-\infty,a]})$$

for all $t \in [0,1]$ and $a \in \mathbb{R}$.

Theorem

Let $(\mu_t)_{t\in[0,1]}$ be a non-obstructed right-continuous peacock. There exists a **unique** left-monotone solution to the corresponding peacock problem and $(S_0,S_t)_{t\in[0,1]}$ is a **Markov** process under π .

Lemma

Let $(\mu_t)_{t\in[0,1]}$ be a right-continuous peacock with $\mu_0(\{x\})=0$ for all $x\in\mathbb{R}$. If there exists a family of intervals $(E_t)_{t\in[0,1]}$ in \mathbb{R} such that

- (i) $\operatorname{supp}(\mu_t) \subset E_t$ and
- (ii) supp $((\mu_u \mu_t)^+) \subset E_t^c$

for all $t \leq u$ in [0,1], then $(\mu_t)_{t \in [0,1]}$ is non-obstructed.

Lemma

Let $(\mu_t)_{t\in[0,1]}$ be a right-continuous peacock with $\mu_0(\{x\})=0$ for all $x\in\mathbb{R}$. If there exists a family of intervals $(E_t)_{t\in[0,1]}$ in \mathbb{R} such that

- (i) $supp(\mu_t) \subset E_t$ and
- (ii) supp $((\mu_u \mu_t)^+) \subset E_t^c$

for all $t \leq u$ in [0,1], then $(\mu_t)_{t \in [0,1]}$ is non-obstructed.

Comparison

Let
$$\mu_t = \operatorname{Unif}_{[-t,t]}$$
.

Figure: Two sample paths of the left-monotone martingale measure (left) and the limit-curtain martingale measure (right).

Thank you for your attention!